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NOMENCLATURE 

d = coefficients for 5th order polynomial fillet (Table 2.2) 
B = pressure gradient parameter, (L/Cpc)(dCp/dx), (Table 2.2) 
Cp = pressure coefficient, (p—poo)/^ 
DPDX= Nominal non-dimensional pressure gradient 

G = Görtier number, ReeJ9/R 

h = specific enthalpy of air, kJ/kg 
L = model length, 1.016 m 
M = Mach number 
m = Coefficient in power-law body description (Table 2.2) 
p = pressure, kPa 
q = dynamic pressure, l/2pU2 

q = heat transfer rate per unit area, W/m2 

R = model radius of curvature, m 
Re = Reynolds number, Reu$ ■ s 
Reu = Unit Reynolds number, m_1 

Ree = Reynolds number based on momentum thickness, Reu$ ■ 0 
r = model cross-sectional radius, m 
s = arc length along model surface, m 
St = Stanton number, q/(pooUoo{h(T0) — h(Tw))) 
T = Temperature, K 
U = velocity, m/s 
x = distance along model longitudinal axis, m 
xc = reference length, 0.508 m = L/2 
a = angle of attack 
p = density, kg/m3 

9 = cone half angle, 7°, also boundary layer momentum thickness, m 

<j) = model roll angle 

Subscripts 
b = beginning of transition 
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c = conical forebody 
e = end of transition 
tr = transition 

w = wall 
oo = freestream conditions upstream of model bow shock 
0 = stagnation conditions 
S = boundary layer edge 

ARe = Ree - Reb 

8 = boundary layer momentum thickness 
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S e et io n   1 

INTRODUCTION 

Boundary layer transition has a strong impact on hypersonic vehicles through 
the increase in heat transfer and skin friction associated with it. The tran- 
sitional region between the end of fully laminar flow and the beginning of 
fully turbulent flow can be of the same length as the laminar zone preced- 
ing it. These factors combine to place a premium on accurate prediction 
of the transitional flow region. In particular, the effect of pressure gradient 
is of concern, since most realistic flight vehicles contain regions of pressure 
gradient. 

A great deal of experimental work exists on the transition zone in low 
speed flow [1]. Much of the work regarding pressure gradient effects is ori- 
ented toward turbomachinery. Numerous studies of hypersonic boundary 
layer transition have been conducted over the years. Most of these studies 
have dealt with the beginning or end of transition, not with the transitional 
zone itself. Jack [2] examined the effect of favorable pressure gradient on 
transition on bodies of revolution at Mach 3.12. Published recovery temper- 
ature data from this test do not show a clear trend. Jack tested configura- 
tions which produced constant favorable pressure gradients d(p/poo)/dx of 0, 
-0.002, and -0.004 per mm, which produced normalized transition lengths, 
xe/xb, of 2.6, 1.7, and 3.6, respectively. Zakkay, et al. [3] investigated a cone- 
flare configuration at Mach 10. Since only one flare configuration was tested, 
it is not possible to extract trends from their experiment. 

Lower Mach number studies are of interest because the physics of the 
transition process have been explored more fully, and because of the high 
quality flight and quiet wind tunnel data available. Transition at low speeds 
is ascribed to the formation of turbulent spots which originate in a fairly 
narrow band of Reynolds numbers, and which grow and convect downstream 
until they coalesce into a fully turbulent boundary layer, as described by Em- 



mons [4]. The region between the beginning of the spots and their complete 
coalescence into turbulence is marked by a streamwise-varying intermittency 
between laminar and turbulent flow. This intermittency averages over time 
to give a smooth spatial transition from laminar to turbulent flow proper- 
ties. The effect of a parameter such as pressure gradient is manifested in 
the length of the mean transitional zone by its effect on spot characteris- 
tics such as generation rate and spreading angle. The available evidence on 
subsonic fiat plate transition indicates that adverse pressure gradient short- 
ens the transition zone length, and favorable pressure gradient lengthens 
it [5, 6, 7]. Dhawan and Narasimha [8] and Potter and Whitfield [9] have 
compiled data showing a trend of increasing transition zone Reynolds num- 
ber, ARe = (Ree - Reb), with increasing transition Reynolds number, Reb, 
for freestream Mach numbers less than 8. Both compilations, however, show 
that Ree increases at a slower rate than Reb, so that the ratio Ree/Reb de- 
creases slightly as Reb increases. Potter and Whitfield show xe/xb ranging 
from 1.2 to 1.6, with xe/xb increasing as Mach number increases. 

One of the most detailed boundary layer transition studies was the AEDC 
transition cone, a sharp, 5° half angle cone, which was tested in a variety of 
facilities and in free-flight [10, 11]. The cone was tested at freestream Mach 
numbers up to 5.2 in ground testing, but up to only approximately Mach 
2 in flight. The cone was adiabatic, and the detection method was surface 
Pitot pressure probe. Normalized transition zone lengths in free-flight were 
1.1 < xe/xb < 1.2. Some ground tests match the flight test results, but 
results vary from facility-to-facility, and typically give longer transition zone 
lengths than freeflight, up to 2.3. At the highest Mach number reported in 

reference   [11], 4.4, xe/xb was 1.5. 
In general, subsonic and supersonic data show that the transition zone 

length increases as ambient noise increases, either in ground test or freeflight. 
Data from the NASA Langley Mach 3.5 pilot quiet tunnel at M^ = 3.5 on a 
5° half angle sharp cone also showed transition zone lengths of 1.1 to 1.2 under 
quiet conditions [12]. Noise in this facility produced normalized zone lengths 
of 1.3 to 1.6. Sharp leading edge flat plates also showed transition zone 
lengths of 1.1 to 1.2 under quiet conditions, but interestingly, the transition 
zone length was unaffected by noise. Data on blunt cones in this facility 
showed a weak trend of increasing transition zone length with increasing nose 
bluntness up to the maximum bluntness Reynolds number of 105. Insufficient 
data were obtained on blunt plates to observe a bluntness trend. 

The lower Mach number data provide some clues as to what the hy- 
personic transition zone may look like, but cannot arbitrarily be applied to 
hypersonic boundary layers.  Transition zone phenomena, even in zero pres- 



sure gradient flow, are less clearly defined at hypersonic speeds. James [13], 
Fischer [14], and Havener [15] have observed turbulent spot formation opti- 
cally at hypersonic Mach numbers up to 9, but no quantitative measurements 
of hypersonic turbulent bursts exist. Owen, et al. [16] have measured inter- 
mittency using thin film gauges at a freestream Mach number of 7. 

Although the assumption of xe/xb = 1.1 to 1.2 based on subsonic and 
supersonic data is conservative from a design point of view, one cannot nec- 
essarily expect the transition zone length to remain constant as Mach number 
increases. As Mach number increases, the boundary layer becomes more sta- 
ble, in the sense that first and second mode amplification rates decrease with 
increasing Mach number [17]. Also, the spreading rate of turbulent free shear 
layers has been shown to decrease with increasing Mach number [18]. Potter 
and Whitfield [9] show a trend of increasing transition zone length with in- 
creasing Mach number, up to Mach 8. The hypersonic transition zone length 
in zero pressure gradient is often assumed to be approximately two. Data 
in references [16, 19, 20, 21, 22, 23, 24, 25, 26, 27] on cones and flat plates 
show a range of transition zone lengths, xe/xb, from 1.6 to 2.5. These exper- 
imenters used a variety of transition detection techniques including surface 
hot film, heat transfer, and recovery temperature measurements. In addi- 
tion, the different transition detection techniques used make it difficult to 
compare results from different tests. The wall-to-stagnation temperature ra- 
tio was varied in two of these experiments [20, 22] and had little effect on 
the transition zone length. All of these experiments were done in conven- 
tional hypersonic facilities. Hypersonic free-flight data compiled by Wright 
and Zoby [28] for comparison with the Reentry-F flight experiment showed 
transition zone lengths from 1.5 to 1.9. Reentry-F itself showed varied be- 
havior as altitude and nose bluntness changed over time. Transition zone 
length on Reentry F varied from 1.6 to 2.0 over most of the trajectory, but 
increased greatly at lower altitudes, reaching a maximum of 5.4. Hypersonic 
flight data are difficult to interpret because, in addition to the usual flight 
test problems of vehicle attitude, etc., hypersonic vehicles tend to have blunt, 
ablating noses [29]. Experiments by Stetson [27] on an 8° half angle cone at 
Moo = 6 showed that the transition zone length xe/xb decreased approxi- 
mately 6% as nose bluntness increased from 0 to 0.2 inch radius (Reynolds 
number based on freestream properties and nose radius of 3.2 x 105). 

The goal of the experiment reported in this paper was to perform detailed 
hot wire measurements in the boundary layer to examine the effect of pressure 
gradient on second mode instabilities. The transition data obtained during 
the test were a by-product of these measurements, and as such the test was 
not optimized for transition measurement.   However, given the paucity of 



data on hypersonic transition lengths, the transition data are being presented 
in their own right. 



Section   2 

EXPERIM EN T 

Tests were conducted at Arnold Engineering Development Center (AEDC) 
Tunnel B at a nominal freestream Mach number of 7.93. Models with, nominal 
non-dimensional pressure gradients (DPDX) of-2, -1, 0, 1, and 4 were tested 
at a variety of unit Reynolds numbers. The test matrix is summarized in 
Table 2.1. The baseline, zero pressure gradient model was tested in 1979 
and 1985, the adverse pressure gradient models were tested in 1990, and 
the favorable pressure gradient models were tested in 1992. Details of the 
zero pressure gradient tests, which consist primarily of hot wire data, are 
presented in Reference [30]. 

The baseline model (configuration 0) consisted of a 7° half angle, sharp- 
nosed cone. The pressure gradient models consisted of a single conical 
forebody, 0.4826 m long, and interchangeable flared or ogive after-bodies 
0.5334 m long (configurations -2, -1, 1, and 4). In the adverse pressure gradi- 
ent models, the flare turning angle was constrained so that at the base of the 
model with maximum turning (configuration 4), the model contour would 
be no more than approximately half way between the configuration 0 con- 
tour and the configuration 0 shock. This ensured that the model bow shock 
would not intersect the aft-body. The favorable pressure gradient model 
turning was constrained so that at the base of the model with maximum 
turning, the model contour was approximately tangent to a cylinder. 

The flare and ogive contours were calculated to provide constant pressure 
gradients. The configuration nomenclature is derived from the nominal non- 
dimensional pressure gradient parameter, (L/Cpc)(dCp/dx). Configuration 
1, for example, is so named because its gradient would produce a 100% rise 
above the cone pressure coefficient, Cp, over the model reference length L, 
1.016 m. Since the flare length was 50% of the model length, the pressure 
coefficient rose 50% above the cone level by the end of the model. Configura- 



tion 4 had a nominal 200% increase in pressure coefficient by the end of the 

model. Configurations -1 and -2 achieved nominal 50% and 100% pressure 
coefficient drops, respectively, by the ends of the models. All models were 
constructed of stainless steel, with approximately 6.4 mm wall thickness. The 

nose radius was nominally 0.05 mm. 
The design of the models is described in References [31] and [32]. The 

power-law configuration, where body radius is proportional to the mth power 
of x, was chosen to describe the aft-body contours. The power-law was 
chosen because in Newtonian impact theory, the power law with m = 1.5 
produces a constant pressure gradient [33]. The basic power law exponent was 
varied to give a constant gradient based on Parabolized Navier Stokes (PNS) 
computations. PNS computations described in [31] and [32] showed that 
m = 1.5 was sufficient for configurations 1 and - 1, but for configuration 4, the 
exponent m was reduced to 1.43. The pressure gradient for configuration - 2 
was reduced in magnitude to -1.9, and the exponent m was increased to 1.595, 
reflecting the increased displacement thickness growth on this configuration. 

A quintic fillet between the end of the cone at x/L = 0.475 and the 
beginning of the power law aft-body at x/L = 0.550 was chosen to match 
radius, first, and second derivatives between the cone and the flare. Although 
the second derivative at the fillet-flare juncture was matched, the slope of the 
second derivative at this point was discontinuous. This produces an overshoot 
in the pressure gradient, but computations [31] showed the overshoot to 
be less than 10% of the desired gradient. The complete equations for the 
flare geometries are given in Table 2.2, where the magnitude of the pressure 
gradient is given by the coefficient B. The model geometries and radii of 

curvature are given in Figures 2.1 and 2.2. 
The models were instrumented with pressure taps and Schmidt-Boelter 

heat transfer gauges. Model surface temperature was measured directly from 
the Schmidt-Boelter gauges. Pressure taps and heat transfer gauges were in- 
stalled at 50.8 mm intervals from x/L = 0.300 to x/L = 0.450, inclusive, on 
the cone, and at 25.4 mm intervals between x/L = 0.550 and x/L = 0.925, 
inclusive, on the power-law aft- body. Pressure taps and heat transfer gauges 
were installed on the 180° and 90° meridians, respectively. Heat transfer mea- 
surements were made by injecting the model, measuring heat transfer, and 
removing the model immediately before significant heating occurred. Several 
measurements were made at each unit Reynolds number in the test matrix. 
Between measurements, the model was cooled to nominal room temperature. 
The nominal wall-to-stagnation temperature ratio for all transition measure- 
ments was thus 0.42. The hot wire and mean boundary layer surveys were 
conducted after a heat soak which raised the model to nominal recovery 



temperature. 
Caveats regarding the data are necessary. Transition Reynolds numbers 

obtained in the experiment are expected to be lower than free-flight transition 

Reynolds numbers [26]. However, hot wire measurements obtained in this 
facility on other conical configurations show that the dominant instability 
is second mode [30]. Experimental wall cooling, nose bluntness, and Mach 
number transition trends have been shown to be described qualitatively by 
linear theory [34]. Thus, at least the instability processes leading up to the 
beginning of transition are not noise dominated. 

Another warning regarding the experiment is that it was designed to 
obtain stability data, and as such, was not optimized for transition experi- 
ments. In particular, the instrumentation is sparse, especially at the cone- 
power-law juncture. This leads to uncertainty in the transition location, as 
discussed below. The cone-power-law configuration was chosen so that the 
pressure gradient would be imposed on second mode waves which had been 
well-developed on the cone. Because of this, the transition begins at various 
points either on the cone or the flare, depending on the unit Reynolds num- 
ber, and thus the transitional region shows varying degrees of influence from 

the pressure gradient. 
The primary sources of inaccuracy in the transition measurements are 

the accuracy of the heat transfer gauges and the uncertainty in the location 
of maxima and minima in heat transfer due to spacing of the gauges. As- 
signment of an accuracy to the gauges is difficult. Reference [35] ascribes 
an accuracy of ± 5% to the gauges. Measurements show good run-to-run 
precision, with variations of less than 1%. An assessment of the gauge ac- 
curacy may be obtained by comparing zero pressure gradient laminar heat 
transfer predictions on the cone to measured heat transfer. Heat transfer 
predictions for this simple case are reliable enough, especially in predicting 
trends with x, to serve as an in-situ calibration of the gauges. The measured 
heat transfer shows some scatter about the predicted values, but most of the 
gauges fall within the ± 5% of theoretical band, although some gauges fall 
outside of this band. A more conservative estimate of transducer accuracy 

would be ± 10%. 
Uncertainty in the transition beginning and end locations is also difficult 

to assess. The heat transfer gauge spacing of 50.8 mm on the model fore- 
cones places a limit on how well the beginning of transition may be resolved. 
In practice, the primary source of uncertainty is scatter in the heat trans- 
fer values, which makes determination of the maximum and minimum heat 
transfer locations somewhat subjective. This source of error is also the most 

difficult to quantify. 



Transition beginning will be defined as the minimum in heat transfer, 
and transition end will be defined as the maximum overshoot in heat trans- 
fer above the turbulent values. In the adverse pressure gradient cases, this 
may only be a local minimum or maximum. Any number of criteria may 
be used to define the beginning and end of transition, and not all give the 
same transition Reynolds number or transition zone length [36]. The choice 
of criteria is largely a matter of convenience. The important point is to use 
the same criteria when comparing measurements. The use of the minimum 
in heat transfer is rational in that it is well-defined, of interest from a design 
viewpoint, and has been shown to coincide with the first departures of bound- 
ary layer profiles and fluctuations away from their laminar values [34]. The 
maximum in heat transfer is also a rational choice for end-of-transition de- 
marcation in that it is well-defined and of design interest. It should be noted 
that the peak heat transfer probably does not correspond to an equilibrium 
turbulent boundary layer. Heat transfer does not relax to its equilibrium tur- 
bulent values for many boundary layer thicknesses downstream of the peak. 
Compressible turbulent boundary layers typically take many boundary layer 
thicknesses to equilibrate after perturbations. Experiments on a turbulent 
boundary layer at M5 = 3.0 [37] have shown that velocity profiles in a tur- 
bulent boundary layer had not relaxed to equilibrium turbulent profiles even 
126 downstream of a successive compression- expansion perturbation. 



Table 2.1: Test Matrix 

CONFIGURATION 

i?eoo m * -_2 -A 0          +1 +4 

1.6 x 106 m-1 XX * XX     B B 
3.3 x 106 m-1 * B Bc      B B 
3.9 x 106 Hi-1 XX XX Bc      XX XX 
4.9 x 106 m-1 BC,E BC,E XX     -Dc, E B,E 
6.6 x 106 m-1 BC,E BC,E BC: E Bc, E BC,E 
8.2 x 106 m-1 XX XX Bc, E XX XX 

Mo = 7.93 
To = 722 K 
Tw/T0 = 0.42 

XX - Not Tested 
*     - Completely laminar 
B    - Beginning of Transition on model 
Bc   - Transition beginning on cone 
E    - End of transition on model 



Table 2.2: Model Geometry Coefficients. 

CONFIGURATION 

Coefficient -2. -\ +1 ±i 

B -1.9 -1.0 1.0 4.0 

m 1.595 1.5 1.5 1.43 

a0 -1.760775 -7.747701 x 10-1 7.584605 x 10"1 2.502281 

a\ 1.779659 x 101 7.901532 -7.498973 -2.505959 x 101 

«2 -7.074643 xlO1 -3.114571 x 101 3.054475 x 101 1.010698 x 102 

03 1.411183 x 102 6.214336 x 101 -6.100083 x 101 -2.021491 x 102 

0,4 -1.402110 x 102 -6.176131 x 101 6.068375 x 101 2.014049 x 102 

as 5.548435 x 101 2.444745 x 101 -2.404474 x 101 -7.992703 x 101 

Jx/L) 
L 

Li LI 

X 

1 < 0.475 

a0 +a1{y)+a2{j)2+a3{jf+a4{j)4+a5{j) 

r(x/L) 

L 

xr. .     ,„,   .  tan(ö) 

L 
tan(ö) + 

,x 

KL' 
0.475 < - < 0.55 

Li 

R     {[B(j-j) + l]m-l} 
Bm L      L L 

>0.55 
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Figure 2.1: Model Geometries. 
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Section   3 

RESULTS 

Surface static pressure results in Figure 3.1 show that the aft-bodies did 
indeed produce nearly constant pressure gradients. The slope of the pressure 
rises shown in the figure are measured values obtained by linear regression of 
the data. Pressure data for roll orientations of 0° and 180° for configuration 1 
(Figure 3.2) show that this model was inadvertently installed at angle of 
attack. Comparison of forecone pressures with the AEDC angle of attack 
correlations shown in Figure 3.3 for a 7° cone [35] show that the angle of 
attack of configuration 1 was approximately 0.4° to 0.8°. All heat transfer 
measurements were made on the leeward side of the model. Calculations of 
heat transfer and momentum thickness described below assumed zero angle 
of attack. Data from previous investigators indicate that the beginning and 
end of transition move forward on the leeward side of a sharp cone at angle 
of attack [23, 27, 38]. Measurements by Stetson [27] at a = 0.5° on an 8° 
sharp cone indicate that the transition zone length is not affected by angle 

of attack. 
Surface temperature distributions are shown in Figure 3.4. The models 

were cooled between runs to provide constant, uniform starting temperature 
distributions. Some temperature non-uniformities are unavoidable during a 
heat transfer run due to non-uniform heating rates from boundary layer tran- 
sition and internal model conduction. The maximum peak-to-peak variation 
in temperature, however, is less than 5%. Heat transfer results are repeat- 
able and are not significantly affected by the slightly non-uniform surface 

temperatures. 
Edge conditions obtained from boundary layer surveys on the adverse 

pressure gradient models at a unit Reynolds number of 3.3 x 106 m_1 are 
shown in Figures 3.5 and 3.6. The boundary layer surveys were obtained 
after the models had heated to adiabatic conditions, but adiabatic wall edge 
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conditions are essentially identical to cooled wall edge conditions. Although 
velocity is decreasing and viscosity is increasing through the adverse pres- 
sure gradient, static density is increasing at a faster rate, so the local unit 
Reynolds number increases through the pressure gradient. The effect is pro- 
nounced on configuration 4, but the increase on configuration 1 is relatively 

small. 
Since only limited flow field surveys were available for the favorable pres- 

sure gradient models, their edge conditions were calculated using the mea- 
sured surface static pressure and the perfect gas relations contained in the 
BLIMP program (Boundary Layer Integral Matrix Procedure), which is a 
numerical integral procedure. The BLIMP program is described in Refer- 
ence [39], and the theory is described in Reference [40]. Comparison of the 
BLIMP calculations for the adverse pressure gradient configurations lends 
confidence to the favorable pressure gradient computations. The discrep- 
ancy between the configuration 1 measured and calculated values are due to 

the model angle of attack. 
Figure 3.7 shows a typical shadowgraph of the aft section of configura- 

tion 4 taken during heat transfer measurements at a freestream unit Reynolds 
number of 1.6 x 106 m-1. The shadowgraph shows transition at approximately 
half of the flare length. This "optical" transition occurs over a short spatial 
extent, approximately half way between the beginning and end of transition 
as measured from heat transfer. This result is consistent with Demetri- 
ades' observation [36]. "Rope" waves were always evident prior to transition, 
and appear on the zero pressure gradient forecone at higher unit Reynolds 
numbers. The rope waves showed a packet-like structure, with regions of 
well-developed waves separated by relatively quiescent flow. No unequivocal 
evidence of turbulent "bursts" were observed on any of the shadowgraphs. 
Two to four shadowgraphs were taken at each unit Reynolds number, and 
they show some frame-to-frame excursion of the transition point, but none 
show transition or turbulent bursts at the extreme beginning or end of tran- 
sition as defined by heat transfer. In general, the "optical" transition occurs 
at different x locations on the upper and lower meridians of the cone, but 
the variation is random, and there is no consistent asymmetry. 

The hot wire spectrum for configuration 4 in Figure 3.8 at x/L = 0.4, 
immediately preceding the flare, shows the presence of a strong second mode 
component at 150 kHz. This component was identified as second mode by 
comparison with linear stability results, and it persisted and continued to 
amplify in the flare region. Previous studies of zero-pressure gradient cooled 
and uncooled cones in this facility [30, 41] have shown that transition is 
second-mode dominated. 
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Laminar boundary layer momentum thicknesses for a freestream unit Rey- 
nolds number of 1.6 x 106 m_1 were calculated using the BLIMP program 
and used along with the model radius of curvature in Figure 2.2 to calculate 
Görtier number. This unit Reynolds number was the only one which pro- 
duced transition on the flare. Figure 3.9 shows that the Görtier numbers at 
transition were less than 2.3. Incompressible correlations indicate transition 
for Görtier numbers greater than approximately seven [42]. Studies for quiet 
wind tunnel nozzle design [43] point out the problems of using such simple 
correlations for transition prediction, but indicate that a Görtier number 
of 8-9 is not unreasonable for supersonic quiet nozzle transition. Although 
various workers have calculated minimum critical Görtier numbers from 0.3 
to 1.0 [44, 45], Hall's theoretical results [46] showed that the neutral stabil- 
ity curve depended on how and where the boundary layer was perturbed, 
so no critical Görtier number was definable. In summary, given the calcu- 
lated Görtier number and the significant measured second mode component, 
the transition in this case was probably not Görtier dominated, but Görtier 
instability may have been present. 

The heat transfer data in their entirety are plotted in Figures 3.10 to 3.14. 
The Reynolds numbers in the figures are based on local boundary layer edge 
unit Reynolds number and arc length along the model. Laminar and turbu- 
lent heat transfer for all configurations was calculated using BLIMR Laminar 
heating at the lowest unit Reynolds number tested for each configuration and 
turbulent heating at the highest unit Reynolds number tested for each config- 
uration, as calculated with the BLIMP program, are shown for comparison. 
For all calculations, the origin of the turbulent boundary layer was taken at 
the cone apex. This will result in some error in the magnitude of predicted 
heat transfer in the turbulent region. However, the goal of the computa- 
tions was only to provide accurate trends of heat transfer versus x to aid 
in transition location determination, not to provide accurate heat transfer 
magnitudes. Laminar heat transfer in zero pressure gradient is proportional 
to the -1/2 power of x, as expected. Turbulent data show more scatter, but 
have roughly a —1/5 power dependence for zero pressure gradient. 

Heat transfer trends in the presence of pressure gradient are more com- 
plex. An adverse pressure gradient in incompressible flow causes bound- 
ary layer thickness to increase and heat transfer to decrease compared to 
zero-pressure gradient values, but the opposite trends occur in compressible 
flow. This is primarily because of streamtube compression and expansion 
and Mach number changes due to pressure gradients in compressible flow. 
Consequently, wall shear and heat transfer will decrease more slowly with 
x in an adverse pressure gradient than in zero pressure gradient, however, 
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a strong enough adverse gradient will cause heat transfer and wall shear to 
increase in the z-direction. The opposite trends occur in a favorable pressure 
gradient. For laminar flow on configuration 1, heat transfer still decreases 
in the ^-direction, but at a slower rate than the zero pressure gradient case. 
For turbulent flow on configuration 1 and laminar flow on configuration 4, 
the heat transfer rises slightly with x. For turbulent flow on configuration 4, 
heat transfer rises with increasing x. On the favorable pressure gradient 
cases, heat transfer drops below the zero pressure gradient values. 

Because of the scatter in the heat transfer data, it is difficult to determine 
where the heat transfer is at a true minimum or maximum. Minima and 
maxima were thus determined using fifth-order, least squares polynomial 
curvefits of the data. The fifth-order polynomial was chosen as the simplest 
function which would give a realistic fit of the data. Although the precise 
beginning and end of transition are still open to some interpretation, the 
curve fitting technique provided a more consistent interpretation of the data. 
Note that both the transition measurement technique and the definition of 
beginning and end affect the transition zone length. 

Beginning of transition occurs on configurations 0, 1, and 4 at the lowest 
unit Reynolds numbers tested for these cases, 3.3x 106 m_1 for configuration 0 
and 1.6 x 106 m_1 for configurations 1 and 4. Configurations -1 and -2 were 
entirely laminar at the lowest unit Reynolds numbers at which they were 
tested, 1.6 and 3.3 x 106 m"1, respectively. End of transition is achieved 
on configuration 0 at unit Reynolds numbers of 6.6 x 106 m_1 and above. 
End of transition is achieved on the pressure gradient configurations at unit 
Reynolds numbers of 4.9 and 6.6 x 106 m_1. At these Reynolds numbers, 
transition begins on the model forecone, so the initial instability growth 
and at least part of the transition process occurs in zero pressure gradient. 
Heat transfer overshoots the predicted turbulent values and relaxes to the 
turbulent trend downstream in all of the pressure gradients. 

Heat transfer data for freestream unit Reynolds numbers of 6.6 and 
4.9 x 106 m-1 are plotted in Figures 3.15 and 3.16 with pressure gradient 
as a parameter. The line fairings through the data in these figures are the 
polynomial fits. The data for configuration 1 do not follow the trends of 
the other configurations, and the beginning and end of transition are biased 
upstream compared to the other cases. These effects are probably due to 
the model angle of attack. Data indicate that both the beginning and end 
of transition move forward on the leeward side of a sharp cone at angle of 
attack [27, 38], and the amount of forward movement on configuration 1 in 
Figures 3.15 and 3.16 is consistent with the model being at 0.4° to 0.8° angle 
of attack, based on data in Reference [38]. 
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Since transition begins at approximately the same location on the forecone 
for all the other pressure gradient models at these Reynolds numbers, the end- 
of-transition marker provides a direct measure of transition zone length. In 
all cases, increasing favorable pressure gradient causes decreasing transition 
length. Results for the adverse pressure gradients do not show such a clear 
trend. For a unit Reynolds number of 6.6 x 106 m_1, configuration 4 has 
a longer transition length than the zero pressure gradient case. No heat 
transfer data were available for the zero pressure gradient case at a unit 
Reynolds number of 4.9 x 106 m_1, but interpolation of the data indicate 
that end-of-transition would be at approximately x/L = 1. The adverse 
pressure gradient causes a decrease in transition length at this unit Reynolds 

number. 
Transition beginning and end are plotted in terms of arc length along the 

model in Figure 3.17 and Reynolds number in Figure 3.18. When the unit 
Reynolds numbers were low enough for transition to begin on the curved 
surface of the model, the favorable gradients delayed transition, and the 
adverse gradients promoted it, as expected. 

Transition zone length is plotted in terms of length and Reynolds num- 
ber in Figures 3.19 and 3.20. The DPDX=0 transition end is consistently 
2.2 times the laminar length. The favorable pressure gradient transition zone 
length is shorter, from approximately 1.7 for configuration -2 to 2.0 for con- 
figuration -1. When the data are plotted in terms of Reynolds number, this 
trend is exaggerated due to the drop in unit Reynolds number with x. Data 
for the adverse gradients are inconclusive in terms of transition length, but 
transition end Reynolds numbers generally seem higher than in zero pressure 
gradient, due to the increase in local unit Reynolds number. The comparison 
in terms of Reynolds number is somewhat misleading, due to history effects. 
Although the Reynolds number at the end of configuration 4 at a freestream 
unit Reynolds number of 6.6 x 106 m_1 is 12 x 106, the boundary layer is not 
representative of a boundary layer which has evolved to this Reynolds num- 
ber at constant edge conditions, but instead probably retains characteristics 
of a boundary layer at lower Reynolds number. 

The observed trends of shorter transition length with favorable pressure 
gradient are opposite to what would be expected based on subsonic results, 
and two factors may contribute. The first factor is that turbulent heat trans- 
fer for favorable pressure gradients is lower than zero pressure gradient heat 
transfer, and adverse pressure gradient heat transfer is higher. For cases 
where transition began on the forecone, pressure gradient seemed to have 
little effect on the rate of increase in transitional heat transfer with x. This 
means that heat transfer would reach turbulent values more quickly in favor- 

16 



able pressure gradient, and more slowly in adverse pressure gradient (Fig- 
ure 3.21). In cases where transition begins on or near the flare, however, 
pressure gradient does have some influence on the rate of increase in transi- 
tional heat transfer, with adverse pressure gradient causing a faster rate of 
increase, and vice versa. In these cases, the net result depends on whether 
the rate of increase in heat transfer is great enough to overcome the effect 
of higher turbulent values. With these competing effects, there is no com- 
pelling reason to expect simple trends in transition zone length with pressure 
gradient. 

A second factor which may explain trends in transition length is body 
curvature effects, if one postulates that transition in these hypersonic cases 
is due to turbulent spot spreading. Limited evidence in supersonic transition 
on cones [47] and subsonic transition [48] on swept wings indicates that tur- 
bulent spots spread at a constant angle with respect to the streamline passing 
through their origin, not with respect to local streamlines. This would en- 
courage shorter transition lengths on the favorable pressure gradient models, 
since their surface area is growing at a slower rate in the ^-direction com- 
pared to the cone, which means that their surface would be covered by a spot 
more quickly. The converse is true of the adverse pressure gradients. This 
argument will remain purely speculative until more detailed measurements 
of the transition process are made, but it does indicate that the results of 
this paper may not be directly relevant to planar geometries. Quiet wind 
tunnel results at Mach 3.5, however, show little difference between cone and 
flat plate transition extent [12]. 
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Section   4 

C O N C LU SIO N S 

The end-of-transition on a zero pressure gradient cone at Mach 8 in the 
AEDC VKF Tunnel B was approximately 2.2 times the laminar length (se/sb = 
2.2). Although favorable pressure gradient delayed the beginning of transi- 
tion, the favorable pressure gradient cases tested produced shorter transition 
lengths than the zero pressure gradient case, about 1.7 to 2.0 times the 
laminar length. Two adverse pressure gradient cases promoted earlier transi- 
tion, but transition zone length results for these were inconclusive, although 
the end-of-transition Reynolds number was somewhat higher than the zero 
pressure gradient case, primarily due to the increase in edge unit Reynolds 
number through the compression. In all of the cases cited, transition began 
in the zero pressure gradient regions of the models, and ended in the pressure 
gradient regions. 

The transition zone length trends are opposite to subsonic trends. One 
possible cause is that in hypersonic flow, turbulent heat transfer in favorable 
pressure gradient is lower than zero pressure gradient heat transfer, thus 
the transitional boundary layer equilibrates to turbulent values more quickly 
in favorable pressure gradient, and vice versa in adverse pressure gradient. 
Another possible factor is that the body surface area is growing at a slower 
rate in the x-direction for the favorable pressure gradient models, thus any 
turbulent spot would cover the surface more quickly in favorable pressure 
gradient, and vice versa in adverse pressure gradient. 

The present results elucidate to a certain extent the effect of pressure 
gradients on transition in hypersonic flow, and provide data for comparison 
to computation. However, the detailed mechanisms of the transition pro- 
cess remain unexplored, and the precise cause of the above-cited results are 
not certain. Detailed time-resolved and spatial measurements, especially in- 
termittency measurements, are required for a fuller understanding of these 
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phenomena. 
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